0%

同余

同余

如果\(m|(a-b)\),则称\(a\equiv{b(mod\,m)}\)

性质

自反性:\(a\equiv{a(mod\,m)}\)

对称性:若\(a\equiv{b(mod\,m)}\),则\(b\equiv{a(mod\,m)}\)

传递性:若\(a\equiv{b(mod\,m)}\)\(b\equiv{c(mod\,m)}\),则\(a\equiv{c(mod\,m)}\)

线性运算:若\(a\equiv{b(mod\,m)}\)\(c\equiv{d(mod\,m)}\),则

\(a\pm{c}\equiv{b\pm{d}(mod\,m)}\)

\(a\times{c}\equiv{b\times{d}(mod\,m)}\)

同乘性:若\(a\equiv{b(mod\,m)}\),则\(ka\equiv{kb(mod\,km)}\)

同除性:若\(a\equiv{b(mod\,m)}\)\(d|m\),则\(\frac{a}{d}\equiv{\frac{b}{d}(mod\,\frac{m}{d})}\)

GCD:若\(a\equiv{b(mod\,m)}\)\((a,m)=(b,m)\) 推论:若\(d|a\)\(d|m\),则\(d|b\)(a,b交换同理)