同余
如果\(m|(a-b)\),则称\(a\equiv{b(mod\,m)}\)
性质
自反性:\(a\equiv{a(mod\,m)}\)
对称性:若\(a\equiv{b(mod\,m)}\),则\(b\equiv{a(mod\,m)}\)
传递性:若\(a\equiv{b(mod\,m)}\),\(b\equiv{c(mod\,m)}\),则\(a\equiv{c(mod\,m)}\)
线性运算:若\(a\equiv{b(mod\,m)}\),\(c\equiv{d(mod\,m)}\),则
\(a\pm{c}\equiv{b\pm{d}(mod\,m)}\)
\(a\times{c}\equiv{b\times{d}(mod\,m)}\)
同乘性:若\(a\equiv{b(mod\,m)}\),则\(ka\equiv{kb(mod\,km)}\)
同除性:若\(a\equiv{b(mod\,m)}\)且\(d|m\),则\(\frac{a}{d}\equiv{\frac{b}{d}(mod\,\frac{m}{d})}\)
GCD:若\(a\equiv{b(mod\,m)}\),\((a,m)=(b,m)\) 推论:若\(d|a\)且\(d|m\),则\(d|b\)(a,b交换同理)